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Abstract

Current virtual environment and teleoperator applica-

tions are hampered by the need for an accurate, quick-

responding head-tracking system with a large working

volume. Gyroscopic orientation sensors can overcome

problems with jitter, latency, interference, line-of-sight

obscurations, and limited range, but suffer from slow

drift. Gravimetric inclinometers can detect attitude

without drifting, but are slow and sensitive to transverse
accelerations. This paper describes the design of a

Kalman filter to integrate the data from these two types of

sensors in order to achieve the excellent dynamic

response of an inertial system without drift, and without

the acceleration sensitivity of inclinometers.

1. Introduction

One of-the key technological challenges in virtual

environment, telooperator,' and augmented reality systems

is head-tracking. Noise and latency in the data output by
most current magnetic,-acoustic, and optical head-

tracking systems cause the objects in the virtual world to

appear jittery and to swim about their correct stationary

positions during head movements. Range limitations
prohibit the use of VR for applications such as out-door

operations training or building waikthroughs. Interference

and distortions, particularly in magnetic systems, can
cause user disorientation [ 1-3].

In order to overcome problems of limited range, port-
ability, and line-of-sight restrictions, some kind of self-

contained sourceless tracking system would be highly

desirable. A purely inertial tracker would have the

additional advantages of nearly instantaneous measure-
ment, availability of motion derivatives for prediction,

superb resolution/negligible jitter, and immunity to all
forms of interference.

The operating principles for measuring orientation and
position of a moving body using only gyroscopes and

accelerometers have been well established in the field of

Inertial Navigation Systems(INS) [4-9]. The variant

called strapdown INS measures the orientation of a body

by integrating the angular rates from three orthogonal
rate gyros affixed to the body, starting from a known

initial orientation. This orientation subsystem is referred

to as an Attitude and Heading Reference System (AHRS).

To get position, 3 linear accelerometers, also affixed to

orthogonal axes of the moving body, measure the total

acceleration vector of the body relative to inertial space.

This acceleration vector can be converted from body

coordinates to earth coordinates using the known

instantaneous orientation of the body determined by the

AHRS. Position is then obtained by subtracting off the

effect of gravity from the measured acceleration and then

performing double integration starting from a known

initial position.

Drift in the determination of orientation by the AHRS
results from gym biases, which lead to a finear drift rate

after single integration. If the:startup bias can be meas-

ured and nulled, the worst ease drift rate is determined by

the bias stability, which ranges from about l*lsecond for

inexpensive silioon micromachined gyros to 0.001*/hour

for sophisticated inertial navigation gyros. The best gyros
of a practical size for head-tracking have a bias stability
on the order of Earth's rotation rate of 15°/hour. Much

less expensive and smaller are miniature vibrating
element gyros with bias stabilities of several de-

grees/minute and worse. Drift in the measurement of

linear displacement is a far more difficult problem due to

the double integration of acceleration, and is not ad-

dressed in this paper.

An inertial head-tracker has been developed by the
author at MIT, concentrating first on the more tractable

problem of 3-DOF orientation tracking [10]. The first

prototype consisted of three orthogonal angular rate

sensors together with a two-axis fluid inclinometer for

drift compensation. The outputs of the angular rate

sensors were integrated to obtain orientation, and the

orientation was occasionally reset by the fluid inclinome-
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Figure 1: MIT inertial tracker 2rid prototype

ter to correct for the slow drift of the gyros. Due to the

relatively high performance of the rate transducers used in

that prototype, even this simple sensor fusion algorithm
was able to achieve orientation tracking performance of

<1 ms latency, 0.008 ° r.m.s, noise, and 0.5 ° absolute

static and dynamic acoaaeyin pitch and roll [11]. At 1

lb., the _ Was still a little large for practical head-

tracking applications.

A second prototype of the MIT Inertial Tracker, shown

in Figure 1, has now been built which incorporates tiny

low-cost solid-state rate gyros, a two-axis fluid inclinome-

ter, and a two-axis fluxgate compass. It weighs only 3.5
ounces, can be comfortably worn on a head-mounted

display, and uses low-cost sensors so that it can be

developed into a competitive co_ial head-wacking

product. However, the miniature low-cost rate gyros have
so much higher hysteresis, nonlinearity and bias instabil-

ity that the simple ad hoc drift correction algorithm used

in the previous prototype does not lead to sufficiently

accurate results. This paper concerns the design of a more

sophisticated sensor data fusion scheme, based on Kalman

filtering, which makes the best use of all the data

available from both types of sensors and thereby achieves

a lower mean squared orientation estimation error than
the ad hoc method. To be useful, the filter must be able to

run in real time on an inexpensive 486-class microproces-
sor, so considerable effort is invested in formulating a

minimum-order Kalman filter and implementing it

efficiently.
The main contributions of this paper are 1) an analysis

of the literature about related Kalman filter applications,

2) an exposition of the modeling decisions that were made
to formulate the filter, which will help others to frame the

questions necessary to apply Kalman filtering to similar

problems, 3) an example of the use of Friedland's

separate-bias Kalman filter formulation, which has not
been previously applied in synthetic environment tracking

work, and 4) a very effective adaptive algorithm for

adjusting the Kalman filter parameters to the instantane-
ous motion characteristics. This paper focuses more on

filter design and implementation than validation, and no
effort is made to formulate an optimal filter and compare

the performance of the reduced-order filter to the optimal
filter in simulation.

2. Kalman filtering

Consider a dynamic system which can be modeled by a

n-by-1 state vector x obeying a discrete-time (DT)

evolution equation

x_+t=Ax k+Bu, +w_ (I)

where A isan n-by-nstatetransitionmatrix.B isan n-by-

p matrixand u isa p-by-I vectorofknown systeminputs,

and w isan n-by-Iprocessnoisevectorwith covariance

matrix Qk. (Note thatlower-casebold letters,Greek or

Roman, denotevectors,and upper-caseboldlettersdenote

matrices.)Suppose thereareindirectmeasurements ofthe

state vector available at each time k, and that they can be

expressed as an m-by-I measurement vector
y, = CX i+ V, (2)

where C isan m-by-n systemobservationmatrix,and v is

an m-by-I measurement noisevectorwith covarianceRt.

A Kalman filterisa recursivealgorithmforcomputing an

estimatei of statewhich isoptimalin the senseof least

squareerrorundercertaincircumstances.One form ofthe
DT Kalman filter,used ascomputing0 TD (ilter,)  TD /MR 8 Tf
(V,) Tj 86Air TD /SB 8 Tf 27 t TD (certain) +TD (is) Tj 
Kt,l(yt, TD /MR 8 Tf
(as) Tj 11t TD (ilter,) -CAit0 0 TD6f30 0 TD
-220 -14 TD (where) T
(V,) Tj 86 27 0 TD /M8 8 Tf
(as) Tj 11t 0 TD (s6 8 Tf
(V,) Tj 86j 35 0 TD (falman) Tg0 0 TD (2R 8 Tf
(as) Tj 11j 30 0 TD (and) Tj 
(V,) Tj 86j TD (state) Tj 0 TD (an) Tj 13) Tj 4 0 TD /Silter) Tjrom TD (under) T
(as) Tj 11t 0 TD (
-222 -12 TD /MR 8 Tf) Tj 38 1 0 TD (m4d) Tj 
(V,) Tj 86 23 0 TD (uovariance) Tj 
0 0 TDMB 8 Tf1j u2 0 TD (and) Tj 1P0 TD (and) Tj 18ccord6 0 TD /MndtheV,



the basis of the extended Kalman filter (EKF) and the

complimentary Kalman filter developed in Section 4.2. A

discussion of Kalman filtering can be found in [12].

3. Literature analysis

In applying Kalman filtering to the inertial orientation

tracking problem there is considerable freedom in system

modeling - what physical variables to assign to the state

vector x, what measurements are in the measurement

vector y, and what matrices A, B, C, Q, and R most

accurately describe the system given those choices. A
literature search was conducted to see how other authors

have used Kalman filters to estimate orientation from the

outputs of 3 strapdown gyros. The 7 most relevant
references found are reviewed in this section. Two come

from vehicle navigation, two from robotics, and three
from virtual environments.

An early maritime navigation work by Bona and Smay

[13], summarized in [12], is of interest because it shows

how to reset gyro biases based on indirect measurements

(position errors that result from them) and provides a

now-common Markov model of gyro bias evolution. The

dynamic system model details how the position errors

evolve in response to the gyro biases, and how the gyro

bias Markov components evolve in response to the

process noise.
The most relevant reference found in the aeronautics

literature was Koifman and Merhav's description of an

autonomously aided strapdown attitude reference system

[14]. Here, an autopilot is created with three low-¢.ost rate

gyros with time-varying biases on the order of 0.1°Is. The
measurements fed into the Kalman filter are from the

three gyros, a' magnetic compass, altimeter, and airspeed
sensor. The state vector contains 16 elements: 3 linear

velocities, 3 angular velocities, 3 orientation Euler angles,

altitude, 3 wind gust velocity components and 3 gyro

bias_. The state transition matrix is obtained by lineariz-

ing the system differential equations which encompass

the aircraft equations of motion as well as the kinematic

Euler equations (6). In contrast to Bona and Smay, the
gyro biases are considered piecewise constant, and the

corresponding diagonal covariance dements are simply

reset whenever a change detection algorithm suspects that

the gyro biases may have changed. It is also instructive to

note that the full order 16-dimensional system could not

be run in real time, so they reduced the state to 11

elements and were then able to achieve about 20 updates

per second with minimal loss in accuracy. The measure-

ment vector consists of the three gyros and the airspeed
sensor.

Barshan and Durrant-Whyte [15] investigated the use

of a solid-state gyroscope for mobile robotics applications.

They paid particular attention to the gyroscope error

model, and came up with an exponential curve to fit the

changes in bias as the gyroscope warms up. They then
implemented a Kalman filter for estimating a single

rotation angle _, with a state vector

[_ • 6 _ _® e.]r and a state transition matrix
l

that propagates the truth states _,_,_,_ and error states

c,_,e, completely independently. The only system

observation is the single rate gyro measurement, so the

system is not observable, and the angular position error
covariance grows unbounded. However, it is demonstrated

that the gyro drift error grows at a rate 5 times slower
when using the exponential gyro error model.

A paper on mobile robot attitude estimation by Vaga-

nay et al [16] provides the only example in the literature

in which gyroscope drift is compensated using two

accelerometers, and is therefore particularly germane to
this drift-free head-tracking application. The Kalman

filter model is very unusual and results in a state vector of

surprisingly low dimension. The integration of angular
rates is done outside of the Kalman filter, and is treated as

part of a measurement system that provides gyroscopically

determined measurements of pitch and roll, 0 s and _l/g,
which are complimented by gravimetrie measurements of

0 and _ from the accelerometers. The state contains 0 and

V and the pitch and roll drift rates, and the transition

matrix used in the Kalman filter is just the identity. This
is the leanest Kalman filter conceivable, as even the

kinematics of Euler angle integration are not modeled, but

the performance reported is nearly comparable to the

other methods. No details are given about the determina-

tion of Q and R.

Azuma and Bishop developed a Kalman filter to use

inertial sensors together with an optical head-tracker to

predict head motion in HMD applications [17]. The

approach is different from the preceding papers, and also

from the application developed in this paper, because the

gyroscope rate signals are not integrated to obtain
orientation. Instead, the orientation is obtained from the

optical head-tracker, and the angular rates are fused with
this in the Kalman filter to yield improved predictions.

The state vector contains a quaternion specifying

orientation, the angular rates in body axes, and the

angular accelerations in body axes. The measurement

consists of the quaternion measured by the optical tracker,

and the angular rates measured by the gyros. The Q and

R matrices are determined off-line using Powell's method

on prerecorded datasets to find the parameters that give

the best performance. Prediction was accomplished by

extrapolating forward in time, using the angular velocity
and acceleration estimates in the state vector.
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Emura and Tachi likewise used gyros to augment the

dynamic performance of an existing head-tracker, but in

this case the tracker was magnetic instead of optical [18,

19]. The state vector contains orientation (Euler angles in

the first paper were replaced with a quaternion in the

second) and angular velocities. The measurement vector

measures all elements of the state, using a Polhemus

magnetic tracker to measure orientation and gyros to

measure the angular rates. A novel aspect of the Kalman
filter structure is the use of two different types of meas-

urement update step: a 3-dimensional measurement used

most of the time, when only gyro data is available, and a
6-dimensional measurement used when the Polhemus

data is available as well. Q and R were found empirically,

using a high-precision mechanical tracker as a reference
to measure remnant errors.

4. System modeling and _ter design

4.1 State and measurement vectors

The first step in modeling is to decide what to put in
the state and measurement vectors. Since the basic

purpose of the Kairnan filter is to estimate orientation, it

is a given that it will be included in the state vector.

Indeed. all the authors except [13] include it. although

they are split between quaternion and Euler angle
representations. In the interest of smaller state dimension

(i.e. faster computation), this implementation uses Euler

angles. The aeronautics convention is used, where 0_, O,

and ¥, called yaw, pitch and roll respectively, represent

positive rotations about the z, y, and x body axes in turn,

with the positive x-axis pointing forward, positive y

pointing right, and positive z pointing down. There is a

singularity in the Euler angle representation at 0 = :1:90%
but this was not found to produce any noticeable distur-

bances in practice.

All the remaining references except [16] also include

angular rates in the state vector and gyroscopic angular
rate measurements in the measurement vector. This is

very natural, as it allows the Euler angle integration

kinematics [20],

o(0 = w, (o(t)),oCt)

ro.(,)l
o(,).1o(,)1. (6)

L (t) J L o,(t)J

[! sinu/(t)tanO(t)  sV/(t)tanO(t)IWs(O(t))-ffi cosl//(t) -sinlp'(t) /

sinlp(t)l cosO(t) coslp(t)l cosO(t)J

to be incorporated into the system dynamics model, and

allows the gym measurements to be utilized in the

obvious way - as measurements. However, while it is
obvious from (6) how the derivatives of the orientation

state elements will be computed from the state, how shall

the derivatives of the angular velocity components depend

on state? Some authors [18, 19] simply assume zero

dependence, i.e. constant angular rates. Some process

noise is added to the angular accelerations to allow for

non-constant angular rates, but in reality the angular
accelerations would not be very much like white noises, so

this model cannot be very optimal. Other authors [15, 17]

augment the state vector with ¢b, which changes the

model to an assumption of constant angular acceleration.
The difference between the true c6 and the assumed

6_ = 0 is closer to white noise. Further derivatives, as in

[15], make the model even more accurate, but lead to an

unreasonably large state vector.

For most aceurate estimation, the equations of motion

of the body being tracked should be included in the

system dynamics model (1). For example, in [14] the

angular accelerations of the aircraft depend precisely,

through well-known aircraft equations of motion, on

quantities in the state vector and aileron positions, which

are known inputs. Unfortunately. head accelerations are
driven by muscle forces - an unknown input - so head

dynamics are not modeled in the current system.

In inertial navigation applications, such as [13-15].

gyro bias terms are usually included in the state vector.

This is very i_t where the only aiding comes from

sparse or indirect sources such as occasional position

fixes. In this case, it is desired to milk as much accuracy

as possible out of the gym integration algorithm, and

time-varying gym biases are the largest source of error.

Our state vector is therefore augmented with the three

gyro bias terms 8o_, 50_, and &oz.

4.2 Complimentary Kalman filter

While most of the references above used a Kalman

filter to directly estimate the state variables of orientation

and it's derivatives, it is common in inertial navigation

systems to instead use a complimentary Kalman filter

which operates only on the errors in those primary state
variables [12].

The direct Kalman filter block diagram in Figure 2 has

measured by the gyros and 0 measured by the aiding

sensors all as measurement inputs. The Euler angle

integration of (6) is then accomplished as part of the

prediction step inside the Kalman filter block. The

complimentary Kalman filter is shown in Figure 3. Here.

the integration of the Euler angles is performed outside of

the Kalman filter, in the block labeled "attitude computa-

tion". One advantage of this structure is that it guaran-
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Section 4.5 describes a complimentary

EKF to operate on the errors of the attitude

computation with the computational

complexity of the EKF reduced by

applying Friedland's separate bias
formulation.

The continuous-time (CT) nonlinear

differential equation which the attitude
computer must integrate was given in (6).

To derive the DT attitude computation

from it, it is useful to approximate the

evolution of 0(t) over a short time interval

by its Taylor series expansion
.. At 2

O(t + At)=O(t)+_l(t)At +O(t)---_-+... (9)

The number of terms which must

i_ be retained depends on the size of

> At. For a first order integration

algorithm (retaining only the first

two terms), the error per step will
be mostly due to the third term,

_._ which is of order _2At212.
Therefore,

¢l'ror rate = 1 _2At.

2

For typical peak head velocities of

about 6 radians/sec and a timestep

of 0.003 sec, this yields an error rate of about .05 rad/s

(about 3°is) which is unacceptable. Retaining the third

term, the error rate will be dominated by the fourth term,

or order to3At 3 / 6, so

_ I'ate _ 1C03_'2.

6
For the same co and At the error rate would be about

0.0003 rad/s, or about l°/min. Since the low-cost gyros

are unlikely to have performance much better than this, a

second order integration algorithm was selected.

Differentiating (6) by the chain rule for partial deriva-
fives results in

O(t) =-_--[W,(O(t)) c0(t)] O(t)+
(lO)

_----[W.(O(t)) co(t)] _(t)

Defining (with time indices suppressed for brevity)

=

/ o_0 ,_o o_'o ' o ' (11)
/ -anW_-_'_ o

cos_( a sin_t a _rt _sin 0 oas _,sin 0_f0 +_oJ

L <msO ' cesO ' om'O om'O

Figure 2: Direct Kalman filter for orientation

I Gyros _t_ Gyro Error _px, ttitude ICompensation I , IComputationl

l ' l
Inclinometers + Om-e
.& Compass = Kalman Filter Error Estimator

Figure 3: Complimentary Kalman filter for oflentation

tees that the rapid dynamic response of the inertial system

will not be compromised by the Kalman filter. Another

advantage is that the gyro rates are not treated as

measurements, so it is unnecessary to include co in the

state vector. Since the head dynamics are not being

modeled in this implementation, co is excess baggage, and

by removing it from x the dimension is reduced from 9 to

6, with more than a three-fold computational savings. The

following sections, therefore, will strive to develop a

complimentary Kalman filter to estimate

using

(8)
as the measurements, where 50 represents the error in the

output of the attitude computer, and 5o) represents the

gyro biases.

4.3 DT nonlinear attitude computation

A Kalman filter which operates on the errors of the

INS attitude computer must mimic the noise-free error

dynamics of the attitude computation. This section derives

the attitude integration algorithm, Section 4.4 linearizes

the attitude algorithm to obtain the error dynamics, and
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and approximating the derivative of 03(0 by its first
difference,

to(t) = to(t + At) - to(t) (12)
At

and substituting (11) and (12) into (10) yields

O(t) = Vs (O(t), to(t)) W a (O(t)) to(t)

+w, (o(t)) to(t+ at)- ,oCt) (13)
at

Plugging (6) and (13) into (9) and rearranging terms
slightly leads to

0(t + at) = 0(t) + Wj to(t) + to(t + at) At
2

(14)

+V, W, to(t)-_

which is the second order DT integration step formula

implemented in the attitude computer. Since At remains

as an explicit parameter in this formula, it is unnecessary
to have constant stepsize. This eliminates the difficulties

of an interrupt driven program structure that would be

necessary to have constant sampling rate data acquisition.

4.4 DT iinearized error dynamics

Equation (14) defines a nonlinear state propagation

function fat for the system with state vector 0 and input to'.

O(t+At)=ft_(O(t),to(t),to(t+At),t) (15)

For the sake of obtainingan extended Kalman filter

which can estimate both orientationerrorsand gyro

biases,consideraugmenting the statevectorwith toand

rewriting the system in the form

mCt+ at)j='i"(E:It)t)])+uCt)

,orroc,m c,o)
tLto(')J)L J

0

u(,) = [ttl(t + At)- to(t)]

where u(t) has been deviously chosen to make to(t) evolve

in accordance with the input history of the previous
system. The system error dynamics can now be obtained

by linearizing about the nominal trajectory [0(t) to(t)] r

to get

'r'o(t+At)l 'q C')l
15to(t+ At)J = ['_ I_i.&o(t). j

where

A:"'<"""'--+Iv.'--_= 1+ YeAr
(18)

,,:=..<,,
and 0 and I are 3-by-3 zero and identity matrices. The

vector partial derivatives of Vn are too messy to write out

in full, hut the computation is straightforward and can be
carded out as follows: 1) form a "row vector" of the three

matrices obtained by differentiating VB with respect to the
first, second and third elements of the vector in the

denominator of the partial derivative; 2) multiply each of

these three matrices by the r.h.s, vector WB_ This results

in a "row vector of column vectors", i.e. a 3-by-3 matrix.

Equation (17) gives the state transition matrix for the

linearized error dynamics of the augmented system. The

angular velocity errors 8¢o are principally due to gyro

biases, and will be interpreted simply as gyro biases from

here on. The A and B submatrices can be interpreted as

describing the influence of the orientation error and gym
biases at time t on the orientation error at time t+At. The

effect of the matrix is fairly obvious; it basically mimics

the attitude computation of (14) except that the input

angular velocity is due to gym biases and the output is
therefore an orientation error. The growth of orientation

error in the absence of angular rate errors is governed by

the A matrix. To first order A=I+VjAt. The identity

term maintains the previously accrued error, and VB(0,ta)

amplifies existing orientation errors in response to
motion.

4.5 Separate-bias Kalman filter formulation

The linear error propagation model of (17) provides

the basis for a complimentary Kalman filter to estimate

these errors. The model has been manipulated into a form
in which the gym biases are assumed constant, thus

permitting the direct application of Friedland's separate-
bias Kalman filtering results [21]. If the constant-bias

model turns out to fit the gym performance poorly, the
restriction can later be ameliorated by use of an age-

weighting factor. If an exponential gyro warm-up model

as in [15] seems more appropriate, this can be accommo-

dated within Friedland's formulation by replacing the

identity submatrix in the state transition matrix of (17).
Switching to Friedland's notation, define an error state

vector x t _-?_O(tt) and a bias state vector b t _Sto(tt)

where t_ is the time at the k t_ iteration of the algorithm.

An augmented state vector z, - [x k b,] r satisfies
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['1zk*l = Fkzt + 0 wk

(19)

The additive white noise w_, with variance Qk, only
effects x, since b is assumed constant. The measurement

equation is

Yk = Lizt + vk , (20)

where v_ is white noise with var/ance Q_. In Friedland's

paper. L k =[H k C,]. but in this application the

measurements from the inclinometers and compass only

measure x and not b. so C = 0 will be used throughout.

resulting in a great simplification from Friedland's
derivation.

Applying Kalman filtering to this model, the optimal
estimate of z is

i,.,= F_ik+ K(k +IXyk÷ _- LF_ik) (21)

K(k) = P(k)Lr[LP(k)L r + R.]-'. (22)

The Ricatti equations for the recursive computation of the

estimation error covariance matrix P0c) needed in the

Kalman gain expression can be rolled together into the

single predictor-to-predictor covariance update equation:

P(k+I)=F.[I-K(k)L]P(k)F, r + 0 ,.,[I 0].(23)

Partitioning P(k) into 3-by-3 submatrices as

P"" P=(k)l (24)
FP_(k)

tr) = [P_r(k) P,(klJ '

the expression for the Kalman gain, (22), may be

rewritten in partitioned form as

rK.(k)l_[P.(k)Hr[H]P,(k)Hr +R.l-t 1

LKdk)J-LPJ(k)HT[m',(k)HT +R,]-'J" (25)

These separate gains are used in two essentially separate
Kalman filters, one for estimating x and one for b. To

2-axis fluid 2-axis fluxgate
inclinometer

compute the K, and Kb gains in (25), covariance sub-

matrices P, and Pxb are needed. These are updated by the

partitioned version of (23):

P/ B, rI K.P: o,]_[,,i,o0x
P-T', :]P. P,J_0

(26)

=[ At - ArK'H-BtKbH-KbH Btl IX

Pff Ak r +PbBk r Pb

Thus, a plethora of 6-by-6 matrix multiplications and

one 6-by-6 inversion are replaced by a somewhat greater

number of 3-by-3 multiplications and one 3-by-3 inver-
sion.

5. Implementation

Figure 4 illustrates the configuration of the hardware

built to demonstrate the inertial head-attitude tracking

concept. The sensors are all embedded in a specially
machined 2" X 2" X 1.25"plasticblock connected by a

thin 10' cable to an analog signal conditioning circuit and

data acquisition card in a PC.
Software was written in "C" to run on the PC and

implement the basic loop shown in Figure

initialize [Kalman isav e
filter ]orientation

•k , , Idata to file,
lacquire I. iterate i ni/.. I Id,ptayo
Isensor I.__read timer, i-_ _alman I_lscreen
Idata I Icompute at Il fitt°r II

'I'

.

Rgure 5: Inertial oflentation tracker main software loop.
The initialization block, executed once

at program start-up, sets the initial state
estimates and covariances as follows:

tor

__ _-changn:ll_a_al_

L_;/..._._. _,_ I lOw'pass filtering

,0,ro
x gyro z gyro

;Intel 486dx33

computer

B-channel, I

12-bit A/D I

converter card I

Figure 4: Orientation tracker hardware configuration.

x0: The inclinometer is read and used

to set V and 0. The compass, if used,

determines ¢; otherwise ¢=0.

bo: The biases of all 3 gyros are meas-

ured during system calibration and stored

in a file. On initialization, the file is read

and &o is initialized with the stored gyro
biases.

P,(0): The errors in the initial deter-

mination of the Euler angles may be
substantial, but they are assumed to be

uncorrelated with one another: P,(0) = I.
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Pb(0): The gym biases at start-up could differ substan-

tially from the prerecorded calibration values, but the

uncertainties are uncorrelated: Pb(0) = 0.1I.

P,b(0): The initial uncertainties in orientation and gyro

bias are completely uncorrelated: P,b(0) = 0.

The data acquisition block scans all the A/D channels

in rapid succession. The new gyro readings are stored as

o_(t+At) and the previous ones are moved back to re(t).

The new inclinometer and compass readings are stored in

y(t+At). In the next block, a timestamp is obtained from

the 8253 timer/counter chip on the PC motherboard. This

counter is driven by a 1.19 MHz oscillator with a 65,536

divisor to generate 18.2 Hz timer ticks for BItS and DOS

time-keeping. By reprogramming the divisor it was found

possible to obtain sub-microsecond timing resolution as

required for inertial integration. At is calculated as the

difference between the current timestamp and the
previous one.

Next, o3(0, ¢tl(t+At) and At are fed into the Kalman

filter update block. We and Va are computed and then

used in (14) to compute the predicted 0(t+At). This

corresponds to the attitude computation block in. Since

the Euler angle estimates, 0 must be maintained anyway,

it is convenient to subsume _ into them, and keep track

of total estimates only. This does not change the filter
framework developed in the previous section in any

important way; it just means that _50(t) is always zero at

the beginning of each iteration of the Kalman filter. At

the end of the Kalman filter update cycle, f_(t + At) is

used to reset 0(t+At) and then flushed back to zero

before the next cycle. Since the attitude error estimates

are propagated along with the attitude estimates through

the nonlinear propagation equation, the top three

elements of Fti t in (21) are replaced with zeros. Since m

is not included in the state, the running estimates of &_

must still be kept track of in the Kalman filter. They are

propagated through the prediction step unchanged, as

governed by the bottom three rows of Fk. The system,

then, can be thought of as a mixture of a purely compli-
mentary Kalman filter as described in the previous section

and an extended Kalman filter which keeps track of total
estimates of state.

The next stage in the computational loop is to incorpo-

rate the measurements and update the error estimates as
follows

= +K.(k+1)v.i
(27)

F_,., = &_+, +Ks(k+l)vk. ,

where Vk+1isthe innovationsobtainedby subtractingthe

predictedorientationestimatesfrom the new orientation

measurements.InordertocalculateK_(k+l) and Kb(k+ I)

with equation(25) itisnecessaryto firstpropagatethe

covariance submatrices using (26). Since the inclinometer

and compass signals are pre-processed to give direct

measurements of the Euler angles, H=I, and (26) is

simplified to the following steps:
T, = A-AK,

1".=T,P 
T, =BT.'

pb. = ,1,2+ Bp b (28)

P,b+ = T2 +BPb ÷

P,+ = PffB r +1"3 +TtP, A r

where T, are simply temporary storage matrices used to

reduce the amount of redundant matrix multiplication. A

small subroutine library was written, following the pointer
conventions and numerical methods described in [22], to

perform the necessary matrix multiplication, transposi-

tion, addition and inversion operations to carry out these
steps.

5.1 The Qk and Rk Matrices

Ideally, Qk is supposed to reflect the magnitude of a

white noise sequence. If all error sources in the inertial

attitude system are taken care of (i.e. modeled in the state

propagation matrix), then wk in (19) should be entirely

due to the noise floors of the angular rate sensors. In this

case, it should be possible to calculate the optimal value of

Qk by measuring the noise covariance, Q, of the station-

ary gyros in advance, then at each time step compute

Q.:G. usingG.--w.(o(,.)).
However, there are many nonwhite error sources be-

sides bias, such as nonlinearity, hysteresis, misalignment,

g-sensitivity, and scale factor temperature coefficient,

none of which are modeled in the current implementation.

The best procedure for designing a reduced-order Kalman
filter under these circumstances is to use a Schmidt-

Kalman filter, which eliminates the unmodeled states

from the state vector, but continues to propagate their

covariances in partitioned Ricatti equations and Q and

R matrices. A simpler approach, which sometimes works

almost as well [12, p. 397], is to just ignore the unmod-

eled states, but "bump up" the Q and R matrices to

account for the noises in the states being discarded. This
approach is taken here, except the "bumping up" is done

in a very inexact way.

Without having a model of the gyro dynamics, the

following error sources in the process equation (19) are
assumed:

gyro noise: From an oscilloscope, for stationary gyros,

_---0.01 rad/s. Covariance per step (0.01At) 2.

integration rule error: From the analysis in Section

4.3, o=0)3At 2 rad/s. Covariance per step cotAt 6.
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scale factor error: This is a composite of nonlinearity

and temperature dependent scale factor variations.
Assuming scale factor accuracy of 1% of full scale,

o=0.01t_ rad/s. Covariance per step (0.01mAt) a.

Assuming At--0.01sec, and that these error sources are

uncorrelated, the error covariances add up to approxi-

mately 10"a(l+c0z+10"4_6). At each iteration of the

Kalman filter software, the following algorithm is used to

compute Qk:

1.fi.d =maxC  . 
2. set Ow2 = 10"8' 2(1+(0,_ +1040._maxs)

'° °l3. set _)k = o", 2 0

0 G,, 2

4. set Qk = Ws0,Wn r

This algorithm is very crude and likely to overestimate

Qk because it uses (,_ to find the variance for all three

diagonal elements of Qk.

R_ is modeled in an equally sloppy manner. The meas-

urement noise is extremely nonwhite. The major source of
measurement noise for the fluid inclinometers is "slosh"

caused by transverse linear accelerations. Linear motion
is not included in the state vector, and therefore, this error
cannot be modeled in the measurement matrix. Further-

more, the magnitude of the low-frequency "slosh" errors

are sometimes extremely large: up to 1 radian. Slosh-

induced inclination errors cause similarly large heading

errors in the compass system. On the other hand, when
the head is still, there is no slosh and the attitude angles

measured by the inclinometer are very accurate. The

algorithm for l_ is therefore designed in a heuristic way

to force the Kalman filter to take good advantage of the

measurements when they are likely to be meaningful, and

toignore them when they are likely to be erroneous. The

basic principle is that o', should approach 1 when slosh is

likely, and approach the static accuracy of the inclinome-

ter/compass measurements, about 0.01 radians, when
slosh is very unlikely. In the absence of a model for

human head motion, it is assumed that a person cannot

sustain a constant linear acceleration of the head very

long with no rotation. Therefore, the longer the period of

time that the head has had l) zero angular velocity, and

2) unchanging inclinometer outputs, the higher the

probability that the head is still. Based on this intuition,

the algorithm used to set Rk is:

1. compute "stilltime", x, since last non-zero gyro
reading OR last change in inclinometer reading.

2. set a, =1/(I+400_)

3. if G, <0.01, set G, =0.01

z 0 0

4. set R, = a, 2 0

0 G,

According to this algorithm, the measurement error

covariances for the inclinometer roll and pitch range from

1, during periods of likely slosh, down to 10 -4, during

periods of likely stillness. The covariance of the compass

yaw error only comes down tO 0.01, corresponding to o =

6°. because even with good inclinometer information,
magnetic distortions in the room make the compass this
inaccurate.

6. Results

Using the Qk and l_ matrices described above, it was
found that the Kalman filter diverged within a few

seconds when the sensor was still. An age weighting

multiplier did not help. After much experimentation, it

was found that the only way to prevent divergence is to

never let the diagonal elements of R_ be less than 1. The

algorithm for R_ was adjusted so that o. ranges from 10,

when ¢=0, to I, when 1:>0.2. The base level of Qk was also
Ixx_ted from 10 .8 to 104 so that the filter would still make

use of the measurements with the larger measurement
noise covariance. With these modifications, the filter

remains stable indefinitely and succeeds in eliminating

long term drift without compromising the rapid dynamic

response of the inertial tracking technique. The filter can

run at approximately 200 iterations/second. This is a five-

fold slowdown as compared to the raw attitude computa-

tion with the Kalman filtering steps commented out.
However, it is still reasonably fast and the delay can be

compensated for by prediction if necessary.
2
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Rgure 6: Test tun without complimentary Kalman filter.
To demonstrate the behavior of the filter, two datasets

the first dataset, the complimentary
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Kalmanfilterblock is disabled by setting Kx and I_ equal

to zero. During the test period of approximately 35

seconds, the sensor block was repeatedly turned through

+90 ° about the roll axis and left to rest on its right side,
then returned to rest in its horizontal orientation on the

table. The roll Euler angle is plotted against time in

Figure 6, which demonstrates the problem with unaided

inertial integration: the accumulated drift error by the end

of the run is about 15". The second dataset is created by a
similar motion sequence, but the Kalman filter is in

effect. As Figure 7 shows, the filter incorporates the driR-
free but noisy measurements from the inclinometers, and

effectively compensates the drift of the inertial system.

Due to the time-varying 1_ strategy which shuts out the
measurements during motion, a certain amount of error

accumulates each time the sensor is rolled over and back,
and the Kalman filter corrects it once the sensor returns to

a stationary pose. The graph clearly shows the time-
course of this corrective action.

1.8 _ , ,

'".......................= ......ir
1.4 ................... .; ................ --÷. ..

1.2 ............ : :. ................... - ....

0 ...... i ................... i....

0.6 ................. i .................. ..:. .

0.4 ............... •................... i....

o-2 ............. :,................... _.....

0 $ 10 IS 20

_ I_)

"'i .......

..! .......

25

• i

• i

J _

• r ...........

Figure 7: Test run with complimentary Kalman filter.
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